首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   14篇
  2022年   2篇
  2021年   10篇
  2019年   5篇
  2018年   4篇
  2017年   11篇
  2016年   5篇
  2015年   9篇
  2014年   12篇
  2013年   9篇
  2012年   19篇
  2011年   21篇
  2010年   16篇
  2009年   17篇
  2008年   15篇
  2007年   18篇
  2006年   19篇
  2005年   8篇
  2004年   11篇
  2003年   8篇
  2002年   7篇
  2001年   3篇
  2000年   5篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
排序方式: 共有244条查询结果,搜索用时 109 毫秒
91.
The effect of inoculations with yeasts occurring on apple surfaces and fungicide treatments on the russeting of Elstar apples was studied. Captan, dithianon and a water treatment were implemented to study the interaction between the fungicides, the inoculated yeast species and Aureobasidium pullulans, and the development of russet. All yeast inoculations aggravated russet, but Rhodotorula glutinis, Sporidiobolus pararoseus and A. pullulans did so to a greater extent than the other species. Both captan and dithianon significantly reduced russeting. Denaturing gradient gel electrophoresis analysis showed that inoculations with R. glutinis and S. pararoseus seemed to suppress other yeast species present on the apple surface.  相似文献   
92.
Pollen tube growth is localized at the apex and displays oscillatory dynamics. It is thought that a balance between intracellular turgor pressure (hydrostatic pressure, reflected by the cell volume) and cell wall loosening is a critical factor driving pollen tube growth. We previously demonstrated that water flows freely into and out of the pollen tube apical region dependent on the extracellular osmotic potential, that cell volume changes reflect changes in the intracellular pressure, and that cell volume changes differentially induce, increases or decreases in specific phospholipid signals. This article shows that manipulation of the extracellular osmotic potential rapidly induces modulations in pollen tube growth rate frequencies, demonstrating that changes in the intracellular pressure are sufficient to reset the pollen tube growth oscillator. This indicates a direct link between intracellular hydrostatic pressure and pollen tube growth. Altering hydrodynamic flow through the pollen tube by replacing extracellular H2O with 2H2O adversely affects both cell volume and growth rate oscillations and induces aberrant morphologies. Normal growth and cell morphology are rescued by replacing 2H2O with H2O. Further studies revealed that the cell volume oscillates in the pollen tube apical region. These cell volume oscillations were not from changes in cell shape at the tip and were detectable up to 30 μm distal to the tip (the longest length measured). Cell volume in the apical region oscillates with the same frequency as growth rate oscillations but surprisingly the cycles are phase-shifted by 180°. Raman microscopy yields evidence that hydrodynamic flow out of the apex may be part of the biomechanics that drive cellular expansion. The combined results suggest that hydrodynamic loading/unloading in the apical region induces cell volume oscillations and has a role in driving cell elongation and pollen tube growth.  相似文献   
93.
The study of quantitative traits provides a window on the interactions between multiple unlinked genetic loci. The interaction between hosts and pathogenic microbes, such as fungi, involves aspects of quantitative genetics for both partners in this dynamic equilibrium. One important pathogenic fungus is Cryptococcus neoformans, a basidiomycete yeast that can infect the human brain and whose mating system has two mating type alleles, a and alpha. The alpha mating-type allele has previously been linked to increased virulence potential. Here congenic C. neoformans strains were generated in the two well-characterized genetic backgrounds B3501alpha and NIH433a to examine the potential influence of genes outside of the mating-type locus on the virulence potential of mating type. The congenic nature of these new strain pairs was established by karyotyping, amplified fragment length polymorphism genotyping, and whole-genome molecular allele mapping (congenicity mapping). Virulence studies revealed that virulence was equivalent between the B3501 a and alpha congenic strains but the alpha strain was more virulent than its a counterpart in the NIH433 genetic background. These results demonstrate that genomic regions outside the mating type locus contribute to differences in virulence between a and alpha cells. The congenic strains described here provide a foundation upon which to elucidate at genetic and molecular levels how mating-type and other unlinked loci interact to enable microbial pathogenesis.  相似文献   
94.
We detected human immunodeficiency virus type 1 (HIV-1) DNA at very low levels in sequential peripheral blood mononuclear cell samples of five out of six high-risk, seronegative, homosexual men and five out of five individuals 7.8 to 1.6 years prior to seroconversion. These data indicate a high prevalence of low-level HIV-1 DNA in exposed seronegative individuals.  相似文献   
95.

This report is the first investigation of yeast biodiversity from the oligotrophic hypersaline coastal waters of the Arabian Gulf surrounding Qatar. Yeasts and yeast-like fungi, were cultured from seawater sampled at 13 coastal areas surrounding Qatar over a period of 2 years (December 2013–September 2015). Eight hundred and forty-two isolates belonging to 82 species representing two phyla viz., Ascomycota (23 genera) and Basidiomycota (16 genera) were identified by molecular sequencing. The results indicated that the coastal waters of the Qatari oligotrophic marine environment harbor a diverse pool of yeast species, most of which have been reported from terrestrial, clinical and aquatic sources in various parts of the world. Five species, i.e., Candida albicans, C. parapsilosis, C. tropicalis, Pichia kudriavzevii and Meyerozyma guilliermondii (n?=?252/842; 30% isolates) are known as major opportunistic human pathogens. Fifteen species belonging to nine genera (n?=?498/842; 59%) and 12 species belonging to seven genera (n?=?459/842; 55%) are hydrocarbon degrading yeast and pollution indicator yeast species, respectively. Ascomycetous yeasts were predominant (66.38%; 559/842) as compared to their basidiomycetous counterparts (33.6%; 283/842). The most isolated yeast genera were Candida (28%; 236/842) (e.g., C. aaseri, C. boidinii, C. glabrata, C. intermedia, C. oleophila, C. orthopsilosis, C. palmioleophila, C. parapsilosis, C. pseudointermedia, C. rugopelliculosa, C. sake, C. tropicalis and C. zeylanoides), Rhodotorula (12.7%; 107/842), Naganishia (8.4%; 71/842), Aureobasidium (7.4%; 62/842), Pichia (7.3%; 62/842), and Debaryomyces (6.4%; 54/842). A total of eleven yeast species ( n = 38) isolated in this study are reported for the first time from the marine environment. Chemical testing demonstrated that seven out of the 13 sites had levels of total petroleum hydrocarbons (TPH) ranging from 200 to 900 µg/L, whereas 6 sites showed higher TPH levels (>?1000–21000 µg/L). The results suggest that the yeast community structure and density are impacted by various physico-chemical factors, namely total organic carbon, dissolved organic carbon and sulphur.

  相似文献   
96.

Background

School surveys provide an operational approach to assess malaria transmission through parasite prevalence. There is limited evidence on the comparability of prevalence estimates obtained from school and community surveys carried out at the same locality.

Methods

Concurrent school and community cross-sectional surveys were conducted in 46 school/community clusters in the western Kenyan highlands and households of school children were geolocated. Malaria was assessed by rapid diagnostic test (RDT) and combined seroprevalence of antibodies to bloodstage Plasmodium falciparum antigens.

Results

RDT prevalence in school and community populations was 25.7% (95% CI: 24.4-26.8) and 15.5% (95% CI: 14.4-16.7), respectively. Seroprevalence in the school and community populations was 51.9% (95% CI: 50.5-53.3) and 51.5% (95% CI: 49.5-52.9), respectively. RDT prevalence in schools could differentiate between low (<7%, 95% CI: 0-19%) and high (>39%, 95% CI: 25-49%) transmission areas in the community and, after a simple adjustment, were concordant with the community estimates.

Conclusions

Estimates of malaria prevalence from school surveys were consistently higher than those from community surveys and were strongly correlated. School-based estimates can be used as a reliable indicator of malaria transmission intensity in the wider community and may provide a basis for identifying priority areas for malaria control.  相似文献   
97.
The phylogenetic position of Saccharomycodes sinensis has been debated by yeast taxonomists. In this study, a multigene phylogenetic analysis based on four regions, namely the 18S ribosomal DNA (rDNA), the D1/D2 domains of the 26S rDNA, the second largest subunit of RNA polymerase II gene (RPB2) and translation elongation factor 1-α gene (EF1-α), were performed to address the phylogenetic placement of S. sinensis. Our result indicated that S. sinensis belongs to Saccharomycetaceae instead of Saccharomycodaceae, and forms a single species lineage divergent from the other genera within Saccharomycetaceae. Yueomyces gen. nov. (MycoBank No. MB 811648) is proposed in the Saccharomycetaceae with Y. sinensis comb. nov. (MycoBank No. MB 811649, type strain CGMCC 2.01395T = IFO 10111T = CBS 7075T) as the type species.  相似文献   
98.
Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is an important lipid in membrane trafficking in animal and yeast systems; however, its role is still largely obscure in plants. Here, we demonstrate that the phosphatidylinositol 3-phosphate 5-kinase, formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), and its product, PtdIns(3,5)P2, are essential for the maturation process of endosomes to mediate cortical microtubule association of endosomes, thereby controlling proper PIN-FORMED protein trafficking in young cortical and stele cells of root. We found that FAB1 predominantly localizes on the Sorting Nexin1 (SNX1)-residing late endosomes, and a loss of FAB1 function causes the release of late endosomal proteins, Ara7, and SNX1 from the endosome membrane, indicating that FAB1, or its product PtdIns(3,5)P2, mediates the maturation process of the late endosomes. We also found that loss of FAB1 function causes the release of endosomes from cortical microtubules and disturbs proper cortical microtubule organization.Phosphoinositides play an important role in various cellular processes, including determination of organelle identity and mediating signal transduction by recruiting effector molecules to various organelles (Balla, 2013). Among those, D3-phosphorylated phosphoinositides, phosphatidylinositol 3-phosphate (PtdIns3P) and phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2], play essential roles in the endosomal trafficking and the vacuolar sorting. PtdIns3P is produced from phosphatidylinositol by class III PI3-kinase, vacuolar protein sorting34 (VPS34). In animal cells, PtdIns3P predominantly localizes to the early endosomes and controls endosome maturation, recycling, and degradation of cargo proteins coordinated with Rab5 GTPases (Jean and Kiger, 2012). In Arabidopsis (Arabidopsis thaliana), PtdIns3P mainly resides on the late endosomes and the prevacuolar membrane (Vermeer et al., 2006; Simon et al., 2014). Dysfunction of AtVPS34 resulted in a defect in growth (Welters et al., 1994), root hair elongation (Lee et al., 2008a), and pollen development (Lee et al., 2008b), indicating an important role for AtVPS34 and its product PtdIns3P in plant development. VPS34-mediated PtdIns3P synthesis at the endosomes recruits phosphatidylinositol 3-phosphate 5-kinase formation of aploid and binucleate cells1 (FAB1)/FYVE finger-containing phosphoinositide kinase (PIKfyve), then FAB1/PIKfyve produces PtdIns(3,5)P2 from PtdIns3P to mediate late endosome maturation in yeast (Saccharomyces cerevisiae) and animals (Ho et al., 2012; Jean and Kiger, 2012). PtdIns(3,5)P2 has crucial roles in the maintenance of lysosome/vacuole morphology and acidification, membrane trafficking of proteins, autophagy, and signaling mediation in response to various stresses (Shisheva, 2008).FAB1 was discovered in yeast, where mutations were found to result in the formation of aploid and binucleate cells (hence its name FAB). In addition, a loss of Fab1p function causes defects in vacuole function and morphology, cell surface integrity, and cell growth (Yamamoto et al., 1995). In mammalian cells, this kinase is called PIKfyve (FYVE is a PI3P-binding domain). FAB1/PIKfyve forms a protein complex with an adaptor-like protein, Vacuole14 (Bonangelino et al., 1997) and PtdIns(3,5)P2 5-phosphatase (Fig. 4; Gary et al., 2002), indicating that the FAB1 complex catalyzes both PtdIns(3,5)P2 synthesis and turnover simultaneously. In mammalian cells, interference of FAB1/PIKfyve function causes severe defects during embryogenesis, resulting in embryonic lethality in Drosophila spp., Caenorhabditis elegans, and mice (Nicot et al., 2006; Rusten et al., 2006; Ikonomov et al., 2011; Takasuga et al., 2013). Whereas most genomes from human to yeast contain a single-copy gene, the Arabidopsis genome codes for four FAB1 genes (FAB1A–D), of which only FAB1A and FAB1B contain a FYVE domain (Mueller-Roeber and Pical, 2002), and fab1a/fab1b double mutant reveals male gametophyte lethality phenotype in Arabidopsis (Whitley et al., 2009). The mutant pollen shows severe defects in vacuolar reorganization following the first mitotic division of development, suggesting an important role of FAB1 and PtdIns(3,5)P2 in vacuolar rearrangement for pollen development (Whitley et al., 2009).Open in a separate windowFigure 4.Localization of endosomal markers upon down-regulation of FAB1A/B or inhibition of PtdIns(3,5)P2 synthesis in young root cortical cells. Localization of mRFP-SYP43, mRFP-vesicle-associated membrane protein (VAMP727), mRFP-ARA7, and SNX1-mRFP without estradiol (A, E, I, and M) or with estradiol (B, F, J, and N) in the FAB1A/B-amiRNA line, or wild-type (WT) plants without YM201636 (C, G, K, and O) or with YM201636 (D, H, L, and P). Bar = 10 μm. Measurement of fluorescent dot structures (Q). Data represent fluorescent dots per cell (mean ± sd). *, P < 0.001 (Student’s t test).We previously developed a transgenic Arabidopsis line that is able to conditionally down-regulate FAB1A and FAB1B expression simultaneously, and demonstrated that a loss of FAB1 function causes various abnormal phenotypes, including growth inhibition, hypersensitivity to exogenous auxin, disturbance of root gravitropism, and floral organ abnormalities (Hirano et al., 2011). In addition, we found that down-regulation of FAB1A/B expression impaired endomembrane homeostasis, including endocytosis, vacuole formation, and vacuolar acidification, likely causing pleiotropic developmental phenotypes that mostly related to the auxin signaling in Arabidopsis (Hirano et al., 2011; Hirano and Sato, 2011). In plants, auxin is a crucial phytohormone that has a wide variety of physiological roles associated with growth, development, and tropic responses (Zhao, 2010). The polar cell-to-cell transport of auxin is mediated by auxin transporters localized on the plasma membrane (PM), such as PIN-FORMED (PIN) proteins (Vieten et al., 2007; Feraru and Friml, 2008). PINs are used as model molecules for polarity establishment on the PM in Arabidopsis. The establishment of PIN polarity is accomplished by the recycling of PINs between the PM and endosomal compartments comprising the trans-Golgi network/early endosomes (TGN/EEs) and the late endosomes (LEs)/prevacuolar compartments. The PIN-recycling pathway is mediated by multiple endosomal regulatory proteins, such as Rab family GTPases and Sorting Nexin (SNX; Jaillais et al., 2006; Park and Jürgens, 2011).Rab proteins function as molecular switches to regulate the tethering and fusion step of transport vesicles to target membranes. Rab5 members of the Rab GTPases have various functions in the endocytic pathway in eukaryotes. The maturation of the early-to-late endosomes is regulated by Rab5-to-Rab7 conversion, which is regulated by the Mon1/Sand-1-Ccz1 complex (Nordmann et al., 2010; Poteryaev et al., 2010). In plants, Rab5-family proteins, Ara6 and Ara7, and Rha1 play important roles in Rab5-mediated endosomal trafficking including the vacuolar trafficking pathway, thereby regulating of the polar transport of auxin and responses to environmental conditions (Ebine et al., 2011; Inoue et al., 2013).SNXs are composed of two conserved domains: the PHOX domain, involved in the interaction with the phosphoinositides, PtdIns3P and PtdIns (3,5)P2, in the endosomal membrane in animals (Cozier et al., 2002), and the BAR domain, mediating dimerization and binding to curved membranes (Peter et al., 2004). Loss of SNX function disrupts the stable association of the retromer subcomplex, VPS26-Vps29-Vps35, with endosomal membranes, and thus results in retromer dysfunction, indicating that SNXs have a crucial role in the assembly and maintenance of the core retromer function (Teasdale et al., 2001; Cullen and Korswagen, 2012). The first plant SNX was identified as a protein that interacts with various receptor kinases in Brassica oleracea (Vanoosthuyse et al., 2003), and then three SNX genes (SNX1, SNX2a, and SNX2b) were identified in Arabidopsis. The snx1 null mutant exhibits a semidwarf phenotype with other subtle developmental defects (Pourcher et al., 2010). SNX1 is localized to the late endosome and is involved in PIN2 recycling between endosomes and the PM (Jaillais et al., 2006). SNX1 has been reported to interact with cortical microtubules via the microtubule-associated protein Cytoplasmic Linker Associated Protein (CLASP), and the clasp1 null mutant displays aberrant SNX1 endosomes and enhanced PIN2 degradation in the lytic vacuoles, suggesting that an association of SNX1 endosomes and CLASP is important for recycling of PIN transporters (Ambrose et al., 2013).Although many analyses of FAB1/PIKfyve, Rab5 family GTPases, SNXs, and microtubles have been reported, and there are significant similarities in endosomal trafficking, a functional relationship between them is still largely obscure.In this study, we demonstrate that FAB1 produced PtdIns(3,5)P2 in Arabidopsis, and knockdown of FAB1 expression or inhibition of FAB1 activity with a FAB1/PIKfyve inhibitor, YM201636, decreased PtdIns(3,5)P2 content. We also found that FAB1 and its product PtdIns(3,5)P2 mediate the late endosome maturation by recruiting endosomal effector molecules, Ara7 and SNX1, onto endosomes to establish endosome-cortical microtubule interaction. Subsequently, the basal polarity of PIN2 in young cortical cells and PIN1 in stele cells is achieved.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号